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Abstract. The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use 18 

management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated 19 

and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI 20 

ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing 21 

farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple 22 

satellite data to develop a global, spatially continuous CI map dataset at 30-m resolution (GCI30). Accuracy 23 

assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ 24 

observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with 25 

existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 26 

1.05, which is close to the mean (1.04) and median (1.13) CI values of the existing six estimates, although the spatial 27 

resolution and temporal coverage vary significantly among products. A spatial comparison with two other satellite 28 

based land surface phenology products further suggested that GCI30 was not only capable of capturing the overall 29 

pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping was the primary 30 

agricultural system on Earth, accounting for 81.57% (12.28 million km2) of the world’s cropland extent. Multiple-31 

cropping systems, on the other hand, were commonly observed in South America and Asia. We found large variations 32 

across countries and agroecological zones, reflecting the joint control of natural and anthropogenic drivers on 33 

regulating cropping practices. As the first global coverage, fine-resolution CI product, GCI30 can facilitate ongoing 34 

efforts to achieve sustainable development goals (SDGs) by improving food production while minimizing 35 

environmental impacts. The data are available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang 36 

et al, 2020). 37 
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 2 

1 Introduction 1 

The interrelated targets of zero hunger, no poverty, and promoting sustainable agriculture have been collectively 2 

recognized as the core sustainable development goals (SDGs) by the United Nations (UN 2015; Wu et al. 2017; 3 

Whitcraft et al. 2019; Hinz et al. 2020). However, 750 million people are currently exposed to severe food insecurity, 4 

and the COVID-19 pandemic may have added approximately 100 million people to the total undernourished 5 

population in 2020 (FAO et al. 2020). Projections have further demonstrated that from 2010 to 2050, the world’s 6 

agricultural production must increase by 70–110% to meet the demands caused by increasing populations and 7 

changing diets (Tilman et al. 2011). However, intensified agricultural activities have many ripple effects on terrestrial 8 

ecosystems, including forest degradation (Morton et al. 2006; Zeng et al. 2018), soil pollution (Lal 2002; Jankowski 9 

et al. 2018), and changes in carbon/water flux seasonality (Gray et al. 2014; Hao et al. 2015), which in turn damage 10 

the welfare of human society (Qi et al. 2020). To meet the critical human needs for food security and environmental 11 

sustainability, it is of major scientific significance to better understand how existing agricultural land resources are 12 

utilized, both locally and globally. 13 

Cropping intensity (CI), defined as the number of crop planting and harvesting cycle(s) within a full year (Gray et al. 14 

2014; Liu et al. 2020), offers a measure of cropland utilization that has profound implications for closing food 15 

production gaps and agricultural intensification (Challinor et al. 2015; Ding et al. 2016; Wu et al. 2018; Waha et al. 16 

2020). CI also plays an essential role in crop modelling that assesses grain yield (Becker and Johnson 2001), soil 17 

quality (Sherrod et al. 2003), and the impacts of climate change (Pielke et al. 2007; Challinor et al. 2015). Given its 18 

importance, it is necessary to accurately estimate CI to improve the management of agricultural activities as well as 19 

their interactions with other physical components of the Earth system. Before the advent of remote sensing, 20 

information about CI could be estimated only based on limited agricultural census data, but these data are often 21 

outdated and variable in accuracy (Liu et al. 2020). Remote sensing has revolutionized our ability to estimate CI, 22 

especially at continental to global scales (Liu et al. 2020). The presence of crop growth and senescence phenology 23 

constitutes the most characteristic temporal feature of agricultural practices, and numerous attempts have been made 24 

to link high temporal frequency vegetation index time series to CI identification. Yan et al. (2014; 2019) developed a 25 

growing season peak detection-based algorithm and used it to monitor the CI spatiotemporal change in China. A 26 

similar approach was adopted by Kotsuki and Tanaka (2015) to derive a global crop calendar dataset containing CI 27 

metrics. Despite their prominent contributions to cropland intensification assessments, most existing CI products have 28 

coarse spatial resolutions, giving rise to the common presence of mixed pixels that can lead to a decreased CI mapping 29 

accuracy. To alleviate this issue, in recent years, fine-resolution optical satellite sensors, such as Landsat and Sentinel-30 

2, have been employed to extract CI information. For example, Jain et al. (2013) found that fine-resolution satellite 31 

imagery can more accurately depict the CI pattern in smallholder agriculture regions than can coarse-resolution 32 

satellite data. Hao et al. (2019) also reported an improved performance of CI identification using harmonized Landsat 33 

Sentinel-2 (HLS) data. 34 

It is becoming increasingly clear that a global, fine-resolution CI product is essential for monitoring the ongoing 35 

cropland intensification process on Earth. However, to the best of our knowledge, such a dataset has not yet been 36 
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 3 

created, reflecting the necessity of a generalizable CI mapping framework that is representative of diverse climate 1 

zones and cropping systems. To overcome this challenge, we proposed a phenophase-based CI mapping framework 2 

in our pilot study ( Liu et al. 2020) with the use of multiple satellite data and the Google Earth Engine (GEE) platform 3 

(Gorelick et al. 2017), offering both methodological and practical bases for operationalizing a global fine-resolution 4 

CI product. Taking advantage of the proposed framework, the primary goal of this research is to advance and develop 5 

a global, spatially continuous CI map at a 30-m resolution (GCI30) using the full archive of Landsat, Sentinel-2 and 6 

MODIS data from 2016 to 2018. To achieve this goal, we regenerated the global cropland extent layer and modified 7 

the CI estimation algorithm on flooded rice paddies by considering the flooding/transplanting signals. The 8 

performance of GCI30 was examined with in situ data as well as with two existing global land surface phenology 9 

products containing CI metrics. With a much finer spatial resolution and global coverage, GCI30 is expected to 10 

contribute to our fundamental understanding of the dynamics of the Earth’s terrestrial surface as well as the human 11 

role in land modification through agricultural activities. 12 

2 Materials and Methods 13 

2.1 GCI30 input data 14 

2.1.1 Cropland extent 15 

This study integrated an ensemble of multiple land cover/cropland layer products (Figure 1) to delimit the global 16 

cropland extent while masking out irrelevant non-cropland pixels for the period of 2016–2018. Readers can refer to 17 

Table S1 for detailed information on these land cover/cropland layer products. Spatially, FROM-GLC was selected 18 

for Europe, Africa, New Zealand, the majority of Asia, and part of Latin America. GFSAD30 was selected for tropical 19 

Asian islands, including Indonesia, Malaysia and the Philippines. In addition to these two global-coverage cropland 20 

extent products, several national or regional datasets, including ChinaCover, CDL, AAFC ACI, NLCD, MapBiomass, 21 

CLUM, SERVIR and INTA, were used because they have been extensively validated by local experts and hence 22 

exhibited high accuracies of cropland mapping. Their spatial extents cover China, the contiguous U.S., Canada, Alaska, 23 

Brazil, Australia, the Lower Mekong River basin (Myanmar, Thailand, Lao, Cambodia and Vietnam), and part of 24 

Argentina, respectively. 25 
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 1 

Figure 1: Spatial distribution of the land cover/cropland layer products used for the global 30-m cropland extent generation. 2 

2.1.2 Satellite images and vegetation indices 3 

All available images of top-of-atmosphere (TOA) reflectance from Landsat-7 ETM+, Landsat-8 OLI and Sentinel-2 4 

MSI during 2016–2018 were used for global CI mapping via the GEE platform. Invalid observations, including clouds, 5 

cloud shadows, snow and saturated values, were identified and masked by the function of the mask (Fmask) algorithm 6 

(Zhu and Woodcock 2012; Qiu et al. 2019). To overcome the multi-sensor mismatch issue, we adopted an inter-7 

calibration approach, which converted Sentinel-2 MSI and Landsat-8 OLI TOA reflectance data to the Landsat-7 8 

ETM+ standard (Chastain et al. 2019). The calibrated images were used to composite the 16-day TOA reflectance 9 

time series of each pixel. Based on the harmonized TOA reflectance composite, the following vegetation indices were 10 

calculated: 11 

NDVI =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷

 12 

EVI = 2.5 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 6 × 𝜌𝑅𝐸𝐷 − 7.5 × 𝜌𝐵𝐿𝑈𝐸 + 1
 13 

LSWI =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅

 14 

where 𝜌𝐵𝐿𝑈𝐸 , 𝜌𝑅𝐸𝐷 , 𝜌𝑁𝐼𝑅, and 𝜌𝑆𝑊𝐼𝑅 are the TOA reflectance values of the blue, red, near-infrared, and shortwave-15 

infrared bands, respectively. We also used the MOD13Q1 NDVI/EVI product and MOD09A1-derived LSWI in our 16 

study to fill data gaps caused by the vacancy of cloud-free Landsat/Sentinel-2 observations. After gap-filling, a 17 
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 5 

weighted Whittaker smoother (Kong et al. 2019) was adopted to generate a dataset of smoothed, seamless image time 1 

series of vegetation indices at a resolution of 30 m. 2 

2.2 Reference samples 3 

The validation of the global CI product requires carefully constructed reference samples (Kontgis et al. 2015; Li et al. 4 

2014; Liu et al. 2020). In this study, we constructed two independent reference datasets (termed RDsat and RDsite 5 

hereafter) (Figure S1) to evaluate the GCI30 performance. The first dataset, RDsat, was generated based on a visual 6 

interpretation of satellite time series via the Geo-Wiki platform (http://www.geo-wiki.org/). Based on the global 7 

segmentation of agroecological zones (Gommes et al. 2016; 2017, termed AEZs here after) (Table S2), we applied a 8 

stratified sampling approach to ensure that RDsat was geographically representative across the globe. We divided all 9 

65 AEZs into four categories based on their cropland proportions: VL (cropland proportion < 4%), L (4% ≤ cropland 10 

proportion < 15%), M (15% ≤ cropland proportion < 40%) and H (cropland proportion ≥ 40%). For each category, 11 

1000 points were randomly collected only within the cropland extent, and their phenological cycles during the period 12 

of 2016–2018 were visually counted. We kept only well-interpreted points with high-level confidence, which led to 13 

3744 sample records. The second dataset, RDsite, was derived from PhenoCam dataset v2.0 (Richardson et al. 2018; 14 

Richardson et al. 2018; Seyednasrollah et al. 2019), which has been widely used as a robust in situ reference for 15 

remotely sensed phenology metric validation. Globally, there are 115 PhenoCam sites on cropland, and a total of 40 16 

sites were collected after removing those with data records of less than one year (Table S3). For each selected site, we 17 

used the green chromatic coordinate (GCC) index and in situ phenology camera image time series for cropping cycle 18 

number identification. It should be noted that not all the selected PhenoCam sites precisely covered a period matching 19 

2016-2018. For instance, the site with ID of ‘usof6’ in Table S3 provided measurements from May 2018 to September 20 

2020, which was out of the study period used for our GCI30 product. However, to make full use of these measurements, 21 

we implemented our approach of CI identification by aligning the study period with the period containing the 22 

measurements at each of these sites. Thus, some CI identification covered longer periods than the three-year length 23 

(2016-2018). 24 

2.3 Global cropping intensity mapping method 25 

2.3.1 CI mapping on non-flooded croplands 26 

We adopted the phenophase-based approach (Liu et al. 2020) to map CI in the non-flooded cropland (relative to the 27 

flooded rice paddy). The methodology can be divided into three main steps, including 1) the construction of NDVI 28 

time-series for cropland pixels, 2) the identification of phenological phases of crops, and 3) the calculation of the 29 

cropping cycles. A descriptive summary of each step is provided as follows. First, NDVI time series based on satellite 30 

data from Landsat, Sentinel-2 and MODIS were fused with the observations aligned with TOA reflectance of Landsat-31 

7 ETM+ in a 16-day interval. Gap filling and linear models were performed to take into account the lack of sufficient 32 

observations as well as the mismatch of spatial resolutions among different sensors (Liu et al. 2020). Then, given the 33 

smoothed, seamless NDVI time series, transitioning points defined as the 50% of the NDVI amplitude (i.e., difference 34 

between minimum and maximum values) were detected and used to separate the entire NDVI time series trajectory 35 
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 6 

into staggered segments of growing or non-growing periods. The transitioning points were labelled as the mid-greenup 1 

and mid-greendown points, which together can define the growing and non-growing periods of the crop phenophase. 2 

Finally, we enumerated the total numbers of the mid-greenup (𝑁𝑢𝑝) and mid-greendown transitioning points (𝑁𝑑𝑜𝑤𝑛), 3 

respectively for each pixel, and took the lower value as the number of the potential cropping cycles (𝑁𝑝𝑐) of that pixel.  4 

𝑁𝑝𝑐 = min{𝑁𝑢𝑝, 𝑁𝑑𝑜𝑤𝑛} 5 

We set a lower limit of the growing period to 48 days to remove the false cropping cycle(s) (𝑁𝑓𝑐) caused by NDVI 6 

time series outliers (Yan et al. 2019). Since the whole study period covers three years from 2016 to 2018, the actual 7 

CI can be derived as: 8 

CI =
𝑁𝑝𝑐 − 𝑁𝑓𝑐

3
 9 

It should be noted that using the binary phenophase profile itself is not effective enough for identifying the continuous 10 

cropping type because such a cropping type exhibits a lower degree of seasonality. Therefore, for each cropland pixel, 11 

we calculated the coefficient of variation (the ratio of the standard deviation to the mean, termed CV hereafter) of the 12 

NDVI time series and adopted a threshold method to determine whether the pixel belonged to the continuous cropping 13 

type (low CV value). Specifically, within each AEZ, half of the RDsat samples labelled continuous cropping (if they 14 

existed) were adopted to obtain the CV threshold. This method generated an independent continuous cropping type 15 

layer, which was integrated with the initially derived CI result. A more detailed description of the CI mapping 16 

framework can be found in Liu et al. (2020). 17 

2.3.2 CI mapping on flooded rice paddies 18 

Flooded rice paddy, which accounts for 12% of the global cropland area but feed approximately half of the population 19 

(FAOSTAT 2010; Ding et al. 2020), bear special mention in our study because it supports the only staple grains that 20 

need to be transplanted (Dong and Xiao 2016), resulting in a relatively short non-growing period that may be 21 

mistakenly missed when using the abovementioned approach. This issue becomes more prominent in areas with high 22 

cloud cover (e.g., Monsoon Asia). Therefore, we modified our approach in flooded rice paddy areas by considering 23 

the influence of the “flooding/transplanting signal” on the created phenophase profile (Figure 2). Similar to the 24 

approach for non-flooded croplands, the NDVI time series trajectory was used to generate an initial phenophase profile 25 

(Figure 2a). Then, within each identified growing season, the flooding/transplanting signals were detected and 26 

recognized based on the following criteria: LSWI > EVI or LSWI > NDVI (Figure 2b), indicating that the water signal 27 

dominates the pixel spectral performance (Xiao et al. 2005; Dong et al. 2015; 2016). We regard the 28 

“flooding/transplanting” period as a non-growing phenophase. Thus, the initial phenophase profile can be divided into 29 

two segments accordingly (Figure 2c), reflecting the reality of double-season rice planting cycles. Finally, the CI 30 

information was determined by enumerating the transition points between different cropping cycles. Due to data 31 

limitations, this specific CI identification approach was applied only in southern China (AEZs C33, C37, C40, C41, 32 
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 7 

and C42) and the Lower Mekong River basin, where the paddy rice type was included in the land cover type scheme 1 

(derived from ChinaCover and SERVIR, respectively). 2 

 3 

Figure 2: Illustration of the specific CI identification for a flooded rice paddy pixel. 4 

2.4 Accuracy assessment 5 

Based on the RDsat and RDsite datasets, the accuracy assessment of GCI30 was conducted in two ways. In the first 6 

validation method, we directly evaluated the difference between the reference and estimated results. Here, the total 7 

number of cropping cycles (termed TNCC hereafter) rather than the actual CI value was used to avoid decimals. Four 8 

complementary indicators, systematic error (SE), mean absolute error (MAE), root mean square error (RMSE) and 9 

coefficient of determination (R2), were calculated as follows: 10 

𝑆𝐸 =
1

𝑁
∑(𝑓𝑖 − 𝑓𝑖)

𝑁

𝑖=1

 11 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑓𝑖 − 𝑓𝑖|

𝑁

𝑖=1

 12 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑓𝑖 − 𝑓𝑖)

2
𝑁

𝑖=1

 13 

𝑅2 = 1 −
∑ (𝑓𝑖 − 𝑓𝑖)

2𝑁
𝑖=1

∑ (𝑓𝑖 − 𝑓̅)
2𝑁

𝑖=1

 14 
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 8 

where 𝑓𝑖 and 𝑓𝑖 are the estimated and reference cropping cycle number(s) for sample pixel 𝑖, respectively. 𝑁 represents 1 

the number of samples, and 𝑓̅ is the mean cropping cycle number value of all samples. In addition to directly 2 

quantifying the mapping errors, we further reclassified the GCI30 result into four categories: single cropping (0 < CI 3 

≤ 1), double cropping (1 < CI ≤2), triple cropping (2 < CI ≤3) and continuous cropping. We obtained the confusion 4 

matrix and calculated quantitative metrics, including overall accuracy (OA), kappa coefficient, producer accuracy (PA) 5 

and user accuracy (UA). Due to the limited sample sizes of RDsite, the classification-based accuracy assessment was 6 

conducted only for RDsat. 7 

2.5 Comparison with other global products 8 

Comparison of GCI30 with other global products or studies was conducted statistically and spatially at global scale. 9 

We first compared and evaluated the statistical differences of global CI calculated based on GCI30 with six existing 10 

statistical-based or satellite-based researches or products (Didan and Barreto 2016; Gray et al. 2019; Wu et al. 2018; 11 

Siebert et al. 2010; Ray and Foley, 2013). Then, we compared GCI30 with two existing global land surface phenology 12 

products containing CI metrics, namely, NASA’s Vegetation Index and Phenology V004 with a 0.05° pixel size from 13 

1981 to 2014 (Didan and Barreto 2016, termed VIP4 hereafter) and Moderate Resolution Imaging Spectroradiometer 14 

Land Cover Dynamics Version 6 with a 500 m pixel size from 2001 to 2018 (Gray et al. 2019, termed MDC12Q2 15 

hereafter) to assess the spatial discrepancies between GCI30, VIP4 and MCD12Q2. To minimize uncertainty caused 16 

by temporal disagreement, we selected only the 2014 VIP4 and the 2016–2018 averaged MCD12Q2 data, within 17 

which the “Number of Seasons” layer of VIP4 and the “NumCycles” layer of MCD12Q2 were extracted for 18 

intercomparison. We upscaled GCI30 to 0.05° and 500 m using the majority algorithm to match the spatial resolution 19 

of VIP4 and MCD12Q2, respectively. The same reclassification procedure described in Section 2.4 transformed the 20 

actual CI value of GCI30 and MCD12Q2 to match the VIP4 dataset's integer value range (0, 1, 2, 3), except for the 21 

continuous cropping and non-cropland pixels that were excluded from our comparison. We generated the difference 22 

maps among GCI30, VIP4 and MCD12Q2 to understand the overall overestimation or underestimation of our mapped 23 

CI results across continents. 24 

3 Results and Discussion 25 

3.1 Reliability of GCI30 26 

We examined GCI30 performance by generating a scatter plot of estimated and reference TNCC derived from RDsat 27 

and RDsite, respectively (Figure 3). In general, GCI30 could provide reliable estimation results across different agro-28 

environmental and management conditions, with relatively small MAE and RMSE values (equal to or less than 0.4 and 29 

0.92, respectively) using the two reference datasets. Referring to R2, GCI30 captured over 91% of the variation in 30 

RDsite-derived TNCC and over 56% of the variation in RDsat-derived TNCC. The discrepancies between RDsat-31 

derived metrics and RDsite-derived metrics were mainly attributed to the differences in sample size and crop planting 32 

diversity. Specifically, the network of PhenoCam spots is spatially sparse, and most cropland sites are distributed in 33 

the United States featuring single cropping systems (Figure S1). There were slight systematic underestimations 34 
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 9 

(negative SE) for GCI30, with the larger bias level occurring for RDsite. This result is consistent with Liu et al. (2020), 1 

indicating an overall conservative CI estimation by GCI30. In addition, we found that larger estimation errors were 2 

commonly observed in samples with more cropping cycles. This tendency was not surprising because of the 3 

accumulated errors from every aspect of information extracted from remote sensing (Defourny et al. 2019), including 4 

data acquisition, time series modelling of vegetation indices, and phenological cycle identification. Therefore, we may 5 

expect that GCI30 faces larger challenges in terms of analysing multiple cropping systems. 6 

 7 

Figure 3: GCI30 accuracy assessment based on RDsat (a) and RDsite (b). The red line represents the linear fitting line with 8 
the intercept forced to 0. The frequency of a specific reference-prediction value pair is proportional to its point size. Samples 9 
identified as continuous cropping types were excluded. 10 

Figure 4 further displays the spatial pattern of RDsat-based TNCC estimation bias across the globe. From 2016 to 11 

2018, 79.8% of the points exhibited unbiased predictions. Among the pixels with disagreement (i.e., non-zero bias), 12 

the majority were associated with one or two cropping cycle difference(s). Overall, there were more underestimation 13 

points (12.2%) than overestimation points (8.0%). Spatially, negative biases were mainly distributed in high CI regions, 14 

including the Pampas (AEZ C26), Central Eastern Brazil (AEZ C23), the Gulf of Guinea (AEZ C03), East African 15 

Highlands (AEZ C02), South of Himalaya (AEZ C44), and Huanghuaihai Plain (AEZ C34), altogether forming a 16 

northward “underestimation belt” along the longitudinal gradient. Given the conservative CI estimation algorithm, it 17 

was somewhat unexpected to observe overestimation errors primarily concentrated in Western Europe (AEZ C60) and 18 

Ukraine to the Ural Mountains (AEZ C55), where the single cropping practice dominates due to limited hydrothermal 19 

conditions (Wu et al. 2018). The negative errors could possibly be due to the large variations in the NDVI time series 20 

during the growing season (Zhang 2015; Qiu et al. 2020), highlighting the complex suite of biotic and abiotic processes 21 

that can obscure the effectiveness of the phenophase-based CI mapping framework. 22 
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 1 

Figure 4: Spatial distribution of RDsat-based TNCC bias. The actual TNCC is proportional to its point size. Sample points 2 
identified as the continuous cropping type were excluded. The blue rectangle indicates overestimations, and the red ellipses 3 
region represents the northward “underestimation belt” along the longitudinal gradient. 4 

Following the reclassification procedure illustrated in Section 2.4, we derived the corresponding confusion matrix of 5 

GCI30 using RDsat samples, with the quantitative accuracy metrics shown in Table 1. We found that GCI30 had 6 

reasonable classification performances, with OA and kappa coefficients greater than 92% and 0.72, respectively. 7 

Regarding the classes of CI, single-cropping systems were associated with more robust classification results than were 8 

multiple-cropping systems. Comparatively, the single-cropping class was more subject to commission errors than 9 

omission errors (PA > UA), while the opposite tendency (PA < UA) was observed for the double- and triple-cropping 10 

classes. Continuous cropping is a fundamentally different agricultural land use management type from others. Here, 11 

we found that the continuous cropping class of GCI30 had a higher PA (93.1%) than UA (77.0%). A possible 12 

explanation for this result is likely attributed to the threshold-based method for continuous cropping identification. 13 

Some noncontinuous cropping systems may also exhibit low CV values, leading to a relatively high commission error 14 

level. Notably, although a stratified sampling strategy was conducted for creating RDsat, its sample size was still 15 

unbalanced among the different CI classes. The single-cropping class alone occupied 88.9% of the total number of 16 

samples. Therefore, future efforts of GCI30 validation need to emphasize the inclusion of more samples with multiple-17 

cropping systems. 18 

Table 1: Confusion matrices of GCI30. 19 

Reference 

CI class type Single Double Triple Continuous UA (%) 

Single 3059 186   94.3 

Double 52 346 2 3 85.9 

Triple 1  6 2 66.7 

Continuous 9 9 2 67 77.0 

PA (%) 98.0 64.0 60.0 93.1  

OA (%) 92.9  

 Kappa 0.728  
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 11 

3.2 Spatial pattern of GCI30 1 

GCI30 provides the first spatially continuous map of global CI at a 30-m resolution (Figure 5). Based on this map, a 2 

heterogeneous pattern in CI compositions across continents was found, which are subject to varying anthropogenic 3 

and climate conditions. Overall, as expected, single cropping was the primary agricultural system on Earth, accounting 4 

for 81.57% (12.28 million km2) of the world’s cropland extent. Double cropping, on the other hand, was typically 5 

implemented in Asia, South America and the Nile River basin of Africa, together occupying 17.42% (2.62 million 6 

km2) of global croplands. Comparatively, the proportions of triple and continuous cropping were quite small, with 7 

their distributions mainly limited to Southeast Asia. According to the area statistics at five-degree intervals, we found 8 

that the area of single cropping reached 54% or higher in all latitude and longitude zones. The double cropping 9 

distribution along latitude peaked in intervals ranging from 20°N to 40° N, which encompassed China and India, the 10 

two most populous countries in the world. Along longitude, double cropping was mainly concentrated in three zones: 11 

55°W to 60°W, 75°E to 90°E and 100°E to 125°E. These regions are commonly characterized by warm and humid 12 

climates, except for the Nile River basin, in which highly developed irrigation infrastructures have been traditionally 13 

used to support intensive farming practices (Wu et al., 2021). Over 75% of triple and continuous cropping areas are 14 

located within tropical zones (5°S to 5°N). The tropical rainforest climate of these regions ensures sufficient water 15 

and heat supplies for crop growth throughout the year (Köppen et al. 2011). 16 

 17 

Figure 5: Geographical distribution of global CI types during 2016 to 2018 identified by GCI30. The area statistics along 18 
latitude and longitude are derived with an interval of five degrees. The area unit is million km2. 19 

Figure 6 displays the GCI30-based TNCC statistics at the continent level. We combined Australia and Oceania (New 20 

Zealand, Melanesia, Micronesia and Polynesia) due to the rarity of cropland on these two continents. Globally, South 21 
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 12 

America exhibited the most intensified cropping level, followed by Asia and Europe. Specifically, the average TNCC 1 

values were 3.67, 3.38 and 3.07 for South America, Asia and Europe, respectively. South America and Asia also 2 

possessed the largest standard deviations of TNCC, indicating the inherent diversity of agricultural activities within 3 

these two continents, as weather conditions directly affect cropping practices (Iizumi et al., 2015). For example, in 4 

Asia, triple and continuous cropping systems were distributed in Southeast Asia, including Indonesia, Malaysia, 5 

southern Thailand and the Mekong River Delta in Vietnam. Double cropping was concentrated in the North China 6 

Plain, Ganga River basin and southern China, while the rest of Asia was dominated by a single cropping pattern, 7 

covering Central Asia, Northeast Asia, and southern India. Following these continents, moderate TNCC was found in 8 

North America (2.93±0.54) and Africa (2.78±0.71). Among all continents, the lowest TNCC occurred in Australia 9 

and Oceania (2.31±0.77), where arid and semiarid climate types are dominant (Köppen et al. 2011; Beck et al., 2018). 10 

 11 

Figure 6: Statistics of GCI30-based TNCC during 2016 to 2018 at the continent level. The red line indicates the standard 12 
deviation. 13 

At the global scale, the average CI pattern was heterogeneous across countries and AEZs (Figure 7, left panel). 14 

Countries with the highest average CI levels were commonly detected in Asia (Bangladesh, Vietnam, Philippines) and 15 

Latin America (Guyana, Paraguay, Suriname, Haiti, and Dominica). Together with Egypt, these top 10 countries 16 

exhibited TNCC values greater than 4.1 during 2016–2018. In contrast, low to moderate CI levels were typically found 17 

in high-latitude countries, such as Canada, Russia, and Mongolia. In addition to the latitude gradient, we found that 18 

the diversity of cropland management played a critical role in shaping the CI pattern. For example, some high-latitude 19 

European countries (Germany, Poland, Belarus, etc.) showed relatively high CI levels due primarily to their advanced 20 

cropland management practices (Guo, 2019). Rainfed agricultural practices lead to fewer cropping cycles in the 21 

Middle East and North African countries, except for Egypt, where most croplands are irrigated (Wu et al. 2018). 22 

Taking climate conditions into account, the heterogeneity of global CI becomes even more prominent among different 23 

AEZs. Arid regions, which cover vast areas in Africa, Australia, and Central Asia, are associated with fewer cropping 24 

cycles due to a lack of water for irrigation (Chiew et al., 2011; Guo et al., 2018) and less developed agricultural 25 

infrastructures (Mason-D'Croz et al., 2019). In contrast, intensive farming is widely distributed in humid and low-26 
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latitude areas such as South China and the Mekong Delta. Among all 65 AEZs, the Huanghuaihai Plain in China had 1 

the highest CI, followed by the Amazon rainforest region of South America and Taiwan Province. The lowest CI 2 

occurred in the Australian Desert, with an average TNCC less than 2. 3 

Overall, countries and AEZs with intensive farming are more subject to internal variability, as reflected by higher 4 

standard deviations (Figure 7, right panel). Globally, there are 14 countries and 7 AEZs exhibiting standard deviations 5 

greater than 1.2, and most of them are located in South America and Asia. Regions with low CI averages but high CI 6 

standard deviations were observed only on the western coast of North America and Queensland to Victoria in Australia, 7 

where partial irrigation in the former (Xie et al., 2019) and unstable rainfall in the latter resulted in diversified cropping 8 

intensities among years (King et al., 2020). The high standard deviations in Australia and Oceania mainly resulted 9 

from the high within-country/zonal heterogeneity, which may encompass aspects including the exceptionally variable 10 

climate with the prevalence of floods and droughts (King et al., 2020) and the annual shifting of crop types, as well as 11 

cultivated and fallow lands (Song et al., 2017). In addition to these regular drivers, the political situation may cause 12 

CI spatiotemporal diversity. Notably, for instance, we found an unusually high standard deviation in Afghanistan, 13 

which was caused by both crop failure during the emergence to early development stages due to adverse weather 14 

conditions (Rousta et al., 2020) and abandoned cropland resulting from armed conflicts and refugee migrations (Iqbal 15 

et al., 2018; Galdo et al., 2020). 16 

 17 

Figure 7: Average and standard deviation (std) of TNCC during 2016 to 2018 at the national and AEZ levels. 18 

3.3 Cross comparison with other studies 19 

Table 2 illustrates the information on the methods, input data, spatial resolution, and statistical average CI from GCI30, 20 

and estimates from other six research or products. Based on GCI30, the global average CI during 2016–2018 was 1.05 21 

(the continuous cropping pixel excluded). Statistically, our CI is in a remarkably high agreement level with estimates 22 

based on the existing six estimates (mean CI: 1.04, median CI: 1.13), despite their significantly varying spatial 23 
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resolution and temporal coverage. The minimum CI among the seven studies was estimated to be 0.77 per year based 1 

on the total cropland extent and the total harvested crop area reported by the agricultural statistics database of the 2 

United Nations Food and Agriculture Organization (FAO) FAOSTAT (http://www.fao.org/faostat/en/) (Siebert et al. 3 

2010). CI estimated by GCI30 is slightly higher than that derived from the FAO statistical database. The CI of other 4 

existing products listed in table 2 ranges from 0.84, as estimated by Ray and Foley (2013), to 1.26, as evaluated by 5 

Wu et al. (2018). The statistics-based CI values estimated by FAO statistics, Siebert et al. (2010) and Ray and Foley 6 

(2013) are lower than those estimated based on remote sensing data including the GCI30 and those estimated by VIP4 7 

and Wu et al. (2018) using AVHRR satellite observation data. The main reason is that statistics-based CI could not 8 

exclude the fallow land area as the statistical information is usually lack of statistical information on fallow land while 9 

fallow land could be easily and precisely identified using remote sensing (Zhang et al., 2014a, b) and excluded when 10 

generating satellite-based CI products. Our CI is also less than those CI products derived from AVHRR (VIP4 and 11 

Wu et al. (2018)). On the one hand, the actual harvest frequency estimated by Wu et al. (2018) might overestimate the 12 

annual harvest areas and accordingly overestimate the cropping intensity. On the other hand, GCI30 systematically 13 

underestimates the cropping intensity when the harvest window is narrow between to growing seasons as a valid 14 

phenology season should include both green-up and green-down segments based on the GCI30 algorithm (Liu et al., 15 

2020). Interestingly, our CI is exactly the same as the global average from MCD12Q2 for the years 2016 to 2018.  16 

Table 2: Comparison of the cropping intensity resulting from three different studies and two global products. 17 

Existing products 

and studies 

Methods Input data Temporal 

range 

Spatial 

resolution 

Global annual 

average CI 

MCD12Q2 Phenometrics-based 

method 

Time series MODIS 

EVI 

2001 to 2018 500 m 1.05 for 2016 

to 2018 

VIP4 Half-maximum VI 

approach 

Time series NDVI and 

EVI2 derived from both 

AVHRR and MODIS 

1981 to 2014 0.05° 1.19 for the 

year 2014 

Wu et al. Peak-counting Time series GIMMS 

NDVI3g 

2009-2011 8 km 1.26 

Siebert et al. The ratio of 

harvested crop 

areas to total 

cropland area by 

excluding fallow 

land 

MIRCA crop areas 2000 5 arcmin 1.13  

Ray and Foley The ratio of 

harvested cropland 

to total cropland 

FAO statistics 2000-2011 National 

based 

0.84 

FAO The ratio of 

harvested cropland 

to total cropland 

FAO statistics 2010 Global 

based 

0.77 

This study Phenophase-based 

approach 

Time series NDVI 

derived from integrated 

dataset from Landsat 

7&8, Sentinel-2 and 

MODIS 

2016-2018 30 m 1.05 

https://doi.org/10.5194/essd-2021-86

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 30 June 2021
c© Author(s) 2021. CC BY 4.0 License.



 15 

We further compared the spatial pattern of the global CI difference between GCI30 and the two global land surface 1 

phenology products (MCD12Q2 and VIP4), as displayed in Figure 8. Overall, all three products revealed consistent 2 

CI estimations across continents, with zero-difference pixels reaching 79% or higher and the majority of CI differences 3 

ranging from -1 to 1. Spatially, positive CI difference values were commonly found in Southeast Asia, the Indian 4 

subcontinent and some parts of Europe. Negative CI difference values, on the other hand, were mainly detected in 5 

North and South America. There were also discrepancies when these two phenology products were used as the 6 

baselines. Referring to MDC12Q2, there were many pixels showing positive values, especially in Africa and mainland 7 

China. However, the opposite tendency was observed using VIP4, which exhibited vast negative pixel distributions in 8 

Europe and North China. 9 

To further explore how the CI difference varied over space, we selected four 15° × 12° subregions (North America, 10 

South America, South Asia and East Asia, which are labelled A, B, C and D, respectively, in Figure 8) that were 11 

representative of the global diversity of crop species, climate types and management conditions. In general, substantial 12 

variations were detected through these spatially explicit maps. The strongest agreement between GCI30 and 13 

MCD12Q2 was found in East Asia (83% of zero values), followed by North America and South Asia, with over 75% 14 

agreement. The lowest agreement level occurred in South America, where 20% of the GCI30 estimations showed 15 

positive or negative CI differences compared to the MCD12 output. Comparatively, the significant differences and 16 

corresponding spatial distributions between the GCI30 and VIP4 outputs had a low level of agreement, although the 17 

percentages of pixels with zero difference reached 50% or higher for all subregions. Specifically, three out of the four 18 

subregions had at least one-fifth of the pixels featuring negative CI differences. The largest negative disagreement 19 

was detected in East Asia, where 41% of the total cropland area had negative values, while North America and South 20 

America also had considerable negative proportions. Finally, in South Asia, the positive and negative pixel 21 

percentages were almost equal, i.e., half and half.  Neither MCD12Q2 nor VIP4 should be considered as ground truth. 22 

In fact, the reliability of these two land surface phenology products, especially VIP4, is affected by several factors, 23 

including a coarse spatial resolution, temporal mismatch and algorithm structure differences when compared to GCI30. 24 

Taking East Asia as an example, the “cross-year season cycle” phenomenon (Liu et al. 2020) caused by winter wheat 25 

planting could lead to one more “partial growing season” being detected by VIP4 (Didan and Barreto 2016), which 26 

largely explains why the CI difference between GCI30 and VIP4 shows an outstanding underestimation pattern. 27 
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 1 

Figure 8: Spatial patterns and statistics of the CI differences among GCI30, MCD12Q2, and VIP4. 2 

3.4 Advantages and limitations of GCI30 3 

As the first global 30-m CI product, GCI30 depicts the worldwide diversity of agricultural land use management in a 4 

spatially explicit manner that has not been fully revealed by existing studies or datasets. Given the CI distribution with 5 

a fine spatial resolution, GCI30 is associated with reduced uncertainties caused by the mixed pixel effect and provides 6 

a more accurate global CI estimation. In addition to the improvement of mapping accuracy, GCI30 has the potential 7 

to monitor landscape-scale cropping practices on fragmented land parcels by smallholders, which comprise over half 8 

of the rural populations in developing nations that are most vulnerable to food security and environmental challenges 9 

(Morton et al. 2006; Jain et al. 2013; Lowder et al. 2016; Liu et al. 2020). Compared with the generalizable crop 10 

phenophase pattern, the GCI30 algorithm is not only efficient in mapping the CI distribution across various AEZs but 11 

is also flexible enough to be improved with updated data inputs. For example, the Harmonized Landsat and Sentinel-12 

2 surface reflectance dataset (Claverie et al. 2018), with a 5-day revisit interval and a 30-m pixel size, is expected to 13 

enhance the global CI mapping performance once its worldwide coverage is ready. The successful production of 14 

GCI30 on the GEE platform illustrates a paradigm of mapping farming practices that is globally consistent and locally 15 

relevant using state-of-the-art cloud computing resources (Lewis et al. 2017; Tamiminia et al. 2020; Amani et al. 16 

2020). It inspires future global fine-scale agricultural research that was previously not applicable. 17 

A large number of natural factors and anthropogenic drivers are related to CI at the planetary scale. Accuracy 18 

assessments show that GCI30 explained over 91% and 56% of the sample variations examined by RDsat and RDsite, 19 

respectively (Figure 3). The errors of GCI30 could be related to the uncertainties of input data and limitations of the 20 

algorithm. The reliability of the cropland extent is a major factor constraining CI mapping performance. To minimize 21 
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this effect, we integrated an ensemble of 11 land cover or specific cropland layer products for acquiring global 1 

cropland extent at a 30-m resolution for 2016–2018. Despite the high overall accuracy of the generated cropland extent, 2 

classification errors still exist, especially in some regions of Africa and Asia where small cropland patches are mixed 3 

with other land covers (Gong et al. 2013; Xiong et al. 2017). The GCI30 algorithm depends heavily on crop 4 

phenological information derived from the time series of vegetation indices. We found that the spatial pattern of the 5 

invalid observation count of the 16-day harmonized TOA reflectance composite (Figure S2) matched well with those 6 

of RDsat sample bias in some cloudy regions, such as the Gulf of Guinea and East African Highlands (Figure 4), 7 

indicating that the performance of GCI30 may be limited in areas suffering from unfavourable weather conditions or 8 

extreme seasonal imbalances of clear observations. We further evaluated the uncertainty of the GCI30 at global scales 9 

from the perspective of data quality. We found higher uncertainty in Amazon, western Africa, South & Southeast Asia 10 

as well as south and southwest China than other regions due to the high cloudy frequency. In high latitude regions in 11 

North Hemisphere, the uncertainty is also high mainly due to the snow cover in winter but with limited impacts on 12 

GCI30 as there are limited cropland at high latitude regions. Rice paddies are fundamentally different from non-13 

flooded croplands, which affects CI mapping performance. We designed a specific rice paddy CI identification 14 

approach by considering the influence of the “flooding/transplanting phase”. While promising, its application was 15 

limited due to the lack of a specific rice paddy layer. Therefore, more improvements can be included, such as 16 

integrating SAR data time series for more accurate flood signal detection (Singha et al. 2019). 17 

Additionally, it is noteworthy that the GCI30 product provides insight only into the current actual cropping intensity; 18 

however, it is not linked to the potential cropping cycles. To assess the CI gaps between potential and actual situations, 19 

climate models could be introduced to simulate the potential cropping cycles under long-term average weather 20 

conditions. The proposed method can be readily applied to other years to retrieve long-term CI maps, which will fill 21 

in the knowledge gaps of decades of long cropping practices and interannual variations (Iizumi et al., 2015). Such 22 

information is key to improving our understanding of the CI response to climate in a more granular manner. 23 

4 Data availability 24 

The GCI30 product is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al, 2020). It 25 

is the first 30-m resolution CI dataset covering a global extent. The GCI30 product was tiled into 504 files in GeoTIFF 26 

format with geographic projection. To be precise, the spatial resolution of the product is 0.00026949459 degrees. Each 27 

GCI30 tile encompasses an area of 10 degree × 10 degree and is named in the following format: 28 

‘Cropping_Intensity_30m_2016_2018_$regions$.tif’. The “regions” in the file name are determined as follows: N/S 29 

(Northern Hemisphere or Southern Hemisphere) followed by a two-digit latitude label of the tile’s top-left corner, and 30 

E/W (Eastern Hemisphere or Western Hemisphere) followed by a three-digit longitude label of the tile’s top-left corner. 31 

Each GeoTIFF file includes two layers. The first layer is the average CI during the three years from 2016 to 2018, 32 

with the noData value or masked areas assigned as -1. The valid values for the first layer are 1, 2, and 3, representing 33 

single cropping, double cropping or triple cropping, respectively. The second layer is the TNCC from 2016 to 2018 34 

with a noData value or masked areas assigned to -1. The continuous cropping type or the number of cropping cycles 35 
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larger than 3 per year is assigned as 127 in the abovementioned two layers. We also included a shapefile of the tiles 1 

named ‘CroppingIntensity_tiles_shapefile.rar’ in the repository so that users could easily find their target tiles. The 2 

GCI30 product was generated on the GEE platform using JavaScript language developed by the authors. The GEE 3 

script as well as the auxiliary data of GCI30 algorithm as an illustration for one tile is open to all potential users and 4 

available at https://code.earthengine.google.com/f23108c6c47025c4acbd90b57c0753f7. 5 

5 Conclusions 6 

In this study, we utilized multisource remote sensing data, including Landsat, Sentinel-2 and MODIS data, to produce 7 

the first 30-m CI map at a global scale. Based on the phenophase-based mapping framework, GCI30 identified CI by 8 

enumerating the transition points between growing and non-growing periods. To improve the CI mapping performance 9 

on flooded rice paddies, we specifically considered the influence of the “flooding/transplanting signal” on the created 10 

phenophase profile. Accuracy assessments and inter-comparisons with existing land surface phenology products 11 

suggested that GCI30 was reliable across different climate zones and cropping systems. According to GCI30, we 12 

estimated that the global average CI was 1.05 during 2016–2018. We found that single-cropping systems occupied 13 

more than 80% of the world’s cropland extent, while multiple-cropping practices were more commonly observed in 14 

South America and Asia than on other continents. National and AEZ-level statistics demonstrated the joint influence 15 

of natural and anthropogenic drivers in controlling CI spatial patterns in most areas of the world. We concluded that 16 

the new GCI30 dataset provided improved estimates of global CI in a spatially explicit manner that has not been fully 17 

captured by previous studies or products and thus can serve to fill data gaps for achieving SDGs. 18 
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